Simulated Annealing with Coarse Graining and Distributed Computing
نویسندگان
چکیده
EON is a software package that uses distributed computing, systematic coarse graining and bookkeeping of minima and first order saddle points too speed up adaptive kinetic Monte Carlo simulations. It can be used to optimize continuously differentiable functions of a large number of variables. The approach is based on finding minima of the cost function by traversing low-lying, first-order saddle points from one minimum to another. A sequence of minima is thus generated in a path through regions of low values of the cost function with the possibility of ’temperature’ controlled acceptance of higher lying saddle points. Searches of first order saddle points are carried out using distributed computing and the minimum-mode following method. Coarse graining which involves merging local minima into composite states and the recognition of previous search paths and saddle points are used to accelerate the exploration of the cost function. In addition to obtaining an estimate of the global minimum, a simulation using this approach gives information about the shape of the cost function in the regions explored. Example applications to the simulated annealing of a cluster of water molecules on a platinum metal surface and grain boundary in copper are presented.
منابع مشابه
Hybrid Meta-heuristic Algorithm for Task Assignment Problem
Task assignment problem (TAP) involves assigning a number of tasks to a number of processors in distributed computing systems and its objective is to minimize the sum of the total execution and communication costs, subject to all of the resource constraints. TAP is a combinatorial optimization problem and NP-complete. This paper proposes a hybrid meta-heuristic algorithm for solving TAP in a ...
متن کاملDistributed Simulated Annealing with MapReduce
Simulated annealing’s high computational intensity has stimulated researchers to experiment with various parallel and distributed simulated annealing algorithms for shared memory, message-passing, and hybrid-parallel platforms. MapReduce is an emerging distributed computing framework for large-scale data processing on clusters of commodity servers; to our knowledge, MapReduce has not been used ...
متن کاملCoarse-Graining Protein Structures With Local Multivariate Features from Molecular Dynamics
A multivariate statistical theory, local feature analysis (LFA), extracts functionally relevant domains from molecular dynamics (MD) trajectories. The LFA representations, like those of principal component analysis (PCA), are low dimensional and provide a reduced basis set for collective motions of simulated proteins, but the local features are sparsely distributed and spatially localized, in c...
متن کاملMeasures of Fault Tolerance in Distributed Simulated Annealing
In this paper, we examine the different measures of Fault Tolerance in a Distributed Simulated Annealing process. Optimization by Simulated Annealing on a distributed system is prone to various sources of failure. We analyse simulated annealing algorithm, its architecture in distributed platform and potential sources of failures. We examine the behaviour of tolerant distributed system for optim...
متن کاملFluctuation relations and coarse-graining
We consider the application of fluctuation relations to the dynamics of coarse-grained systems, as might arise in a hypothetical experiment in which a system is monitored with a low-resolution measuring apparatus. We analyze a stochastic, Markovian jump process with a specific structure that lends itself naturally to coarse-graining. A perturbative analysis yields a reduced stochastic jump proc...
متن کامل